Главная » Hi-News » Во Вселенной почти нет антиматерии. Почему?

Во Вселенной почти нет антиматерии. Почему?

Мы видим линии атомной абсорбции и эмиссии, видим, что материя взаимодействует с другими формами материи, видим звездообразование и смерть звезд, столкновения, рентгеновское излучение и многое другое. Когда мы смотрим на Вселенную, на все ее планеты и звезды, галактики и скопления, газ, пыль, плазму, мы видим всюду одни и те же сигнатуры. Если законы физики диктуют симметрию между материей и антиматерией, Вселенная, которую мы наблюдаем, не должна существовать. Есть очевидный вопрос, который требует объяснения: почему мы видим все это?

Но мы здесь, и никто не знает, почему.

Почему во Вселенной нет антиматерии?

Подумайте об этих двух противоречивых, на первый взгляд, фактах:

  1. Каждое взаимодействие между частицами, которое мы когда-либо наблюдали при любых энергиях, никогда не создавало и не разрушало одну частицу материи, не создавая при этим и не уничтожая равное количество частиц аниматерии. Физическая симметрия между материей и антиматерией очень строгая, ведь:
  • каждый раз, когда мы создаем кварк или лептон, мы также создаем антикварк и антилептон;
  • каждый раз, когда кварк или лептон уничтожается, антикварк или антилептон также уничтожается;
  • созданные или уничтоженные лептоны и антилептоны должны быть в балансе по всей семье летпонов и каждый раз, когда кварк или лептон взаимодействуют, сталкиваются или распадаются, общее число кварков и лептонов в конце реакции (кварки минус антикварки, лептоны минус антилептоны) должно быть и будет таким же, каким было в начале.

Единственный способ изменить количество материи во Вселенной подразумевал также изменение количества антиматерии на такую же величину.

И все же, есть второй факт.

  1. Когда мы смотрим на Вселенную, на все звезды, галактики, газовые облака, скопления, сверхскопления и крупномасштабные структуры, кажется, будто все это состоит из материи, а не антиматерии. Везде и всюду, где антиматерия и материя встречаются во Вселенной, происходит фантастический выброс энергии из-за аннигиляции частиц.

Мы не видим никаких признаков того, что некоторые из звезд, галактик или планет, которые мы наблюдаем, сделаны из антивещества. Но мы не видим никаких признаков уничтожения вещества антивеществом в самых больших масштабов. Вместо этого всюду мы видим только материю, куда ни посмотри. Мы не видим характерных гамма-лучей, которые следовало бы ожидать увидеть, если бы антиматерия сталкивалась с материей и аннигилировала.

С одной стороны, нет никакого известного способа сделать больше вещества, чем антивещества, если обращаться к частицам и их взаимодействию во Вселенной. И это кажется невозможным. С другой стороны, все, что мы видим, определенно состоит из вещества, а не антивещества.

Когда антивещество сталкивается с веществом во Вселенной, оно производит гамма-лучи очень специфических частот, которые можем затем обнаружить. На самом деле, мы наблюдали аннигиляцию материи и антиматерии в некоторых экстремальных астрофизических условиях, но только возле гиперэнергетических источников, которые производят вещество и антивещество в равных количествах — черные дыры, например. Межзвездная межгалактическая среда полна материала, и полное отсутствие этих гамма-лучей является сильным сигналом о том, что никогда больше нет большого количества частиц антиматерии, поскольку тогда сигнатура материи-антиматерии была бы обнаружена.

Это ограничение говорит нам, что в Млечном Пути количество антиматерии не может превышать значение 1 частицы на квадриллион (1015), относительно общего количества материи. Если вы бросите одну частичку антиматерии в нашу галактику, она просуществует порядка 300 лет, прежде чем будет уничтожена частицей материи.

Наблюдая расстояния от нескольких миллионов световых лет до трех миллиардов световых лет, мы наблюдали недостаток рентгеновских и гамма-лучей, которые могли бы указывать на аннигиляцию материи и антиматерии. На крупных масштабах — масштабах спутниковых галактик, больших галактик размера Млечного Пути и даже скоплений галактик — ограничения менее строгие, но все же очень сильные. Даже в больших космологических масштабах 99,999% того, что существует в нашей Вселенной, определенно будет представлено материей (как мы), а не антиматерией.

Что ж, есть два варианта: либо Вселенная была рождена с большим количеством материи, нежели антиматерии, либо что-то произошло на ранней стадии, когда Вселенная была очень горячей и плотной, и породило асимметрию материи и антиматерии, которой изначально не было. Как же мы оказались в такой ситуации, что Вселенная состоит из большого количества материи и практически не содержит антиматерии, если законы природы абсолютно симметричны между материей и антиматерией?

Если наша Вселенная каким-то образом создала асимметрию материи и антиматерии там, где изначально ее не было, то правила, которые работали тогда, останутся неизменными и сегодня. Первую идею проверить научно без воссоздания целой Вселенной не получится, но вторая весьма убедительна. Если мы достаточно умны, мы сможем разработать экспериментальные тесты, раскрывающие происхождение материи в нашей Вселенной.

Вот они: В конце 1960-х годов физик Андрей Сахаров определил три условия, необходимые для бариогенеза или создания большего количества барионов (протонов и нейтронов), чем антибарионов.

  1. Вселенная должна быть неравновесной системой.
  2. В ней должны быть C- и CP-нарушение.
  3. Должны быть взаимодействия, нарушающие барионное число.

Второе тоже просто, поскольку C-симметрия (замена частиц античастицами) и CP-симметрия (замена частиц зеркально отраженными античастицами) нарушаются во множестве слабых взаимодействий с участием странных, очарованных и прекрасных кварков. Первое соблюсти просто, поскольку расширяющаяся и остывающая Вселенная с нестабильными частицами в ней (и античастицами), по определению, будет вне равновесия.

Экспериментально мы наблюдали, что баланс кварков к антикваркам и лептонов к антилептонам явно сохраняется. Остается вопрос, как нарушить барионное число. Но в Стандартной модели физики элементарных частиц не существует явного закона сохранения ни для одной из этих величин по отдельности.

Точно так же каждый лептон получит лептонное число (L) 1. Нужно три кварка, чтобы сделать барион, поэтому на каждые три кварка мы назначаем барионное число (B) 1. Антикварки, антибарионы и антилептоны будут иметь отрицательные числа B и L.

При правильных обстоятельствах вы можете не только создавать дополнительные протоны, но и электроны к ним. Но по правилам Стандартной модели сохраняется только разница между барионами и лептонами. Точные обстоятельства неизвестны, но Большой Взрыв дал им возможность реализоваться.

Если создание и уничтожение частиц работает так, как мы думаем, ранняя Вселенная должна была быть заполненной равным количеством частиц материи и антиматерии, которые взаимно превращались друг в друга, поскольку доступная энергия оставалась чрезвычайно высокой. Самые первые этапы существования Вселенной описываются невероятно высокими энергиями: достаточно высокими, чтобы создать каждую известную частицу и античастицу в большом количестве по знаменитой формуле Эйнштейна E = mc2.

При соблюдении правильных условий — в частности, трех условий Сахаров — это может привести к избытку вещества над антивеществом, даже если изначально его не было. По мере расширения и охлаждения Вселенной нестабильные частицы, однажды созданные в изобилии, будут разрушаться. Задача для физиков — создать жизнеспособный сценарий, соответствующий наблюдениям и экспериментам, который может дать вам достаточный избыток вещества над антивеществом.

Существует три основных возможности возникновения этого избытка вещества над антивеществом:

  • Новая физика в электрослабом масштабе может значительно увеличить количество C- и CP-нарушения во Вселенной, что приведет к асимметрии между веществом и антивеществом. Взаимодействия Стандартной модели (через процесс сфалерона), которые нарушают B и L индивидуально (но сохраняют B — L), могут создать нужные объемы барионов и лептонов.
  • Новая физика нейтрино при высоких энергиях, на которую нам намекает вселенная, могла бы создать фундаментальную асимметрию лептонов: лептогенез. Сфалероны, сохраняющие B — L, затем могли бы использовать лептонную асимметрию для создания барионной асимметрии.
  • Или бариогенез в масштабах теории великого объединения, если новая физика (и новые частицы) существуют в масштабах великого объединения, когда электрослабая сила объединяется с сильной.

У этих сценариев есть общие элементы, поэтому давайте рассмотрим последний из них, просто ради примера, чтобы понять, что могло произойти.

Также должны быть их партнеры из антиматерии: анти-X и анти-Y, с противоположными числами B — L и противоположными зарядами, но с одной массой и временем жизни. Если теория великого объединения верна, должны быть новые, сверхтяжелые частицы, называемы X и Y, которые обладают как барионоподобными, так и лептоноподобными свойствами. Эти пары частица-античастица могут быть созданы в большом количестве при достаточно высоких энергиях, чтобы впоследствии распасться.

Если же у нас есть C- и CP-нарушения, возможно, будут небольшие различия в том, как распадаются частицы и античастицы (X, Y и анти-X, anti-Y). Итак, мы наполняем Вселенную ими, а затем они распадаются.

Есть важное различие, которое допускается при нарушении C- и CP: X может с большей вероятностью распасться на два верхних кварка, чем анти-X — на два анти-верхних кварка, тогда как анти-X с большей вероятностью распадется на нижний кварк и электрон, чем X — на анти-верхний кварк и позитрон. Если у X-частицы есть два пути: распад на два верхних кварка или на два анти-нижних кварка и позитрон, тогда anti-X должен пройти два соответствующих пути: два анти-верхних кварка или нижний кварк и электрон.

При наличии достаточного числа пар и распада таким образом, вы сможете легко получить избыток барионов над антибарионами (и лептонов над антилептонами), где его раньше не было.

Мы начали с полностью симметричной Вселенной, подчиняющейся всем известным законам физики, и с горячего, плотного, богатого состояния, наполненного материей и антиматерией в равных количествах. Это лишь один пример, иллюстрирующий наше представление о том, что произошло. С помощью механизма, который нам еще предстоит определить, подчиняющийся трем условиям Сахарова, эти естественные процессы в конечном итоге создали избыток вещества над антивеществом.

Возможно, в этом столетии мы найдем ответ на этот вопрос. Тот факт, что мы существуем и состоит из материи, неоспорим; вопрос в том, почему наша Вселенная содержит что-то (материю), а не ничего (ведь вещества и антивещества было поровну).

Расскажите в нашем чате в Телеграме. Как думаете, почему во Вселенной почти нет антивещества?





Оставить комментарий

Ваш email нигде не будет показанОбязательные для заполнения поля помечены *

*

x

Это интересно

На Луне хотят построить железные дороги для езды между лунными станциями

Единственным космическим объектом, который когда-либо был посещен людьми, остается Луна. У человечества на нее очень большие планы: во-первых, в ближайшие несколько лет туда хотят вернуться астронавты. Потом сразу несколько стран планируют построить на ее поверхности лунные станции, чтобы в будущем ...

Таблетки “для ленивых” смогут заменить занятия в спортзале

Ученые создали препарат, который можно будет применять вместо занятий спортом Физическая активность необходима человеческому организму, так как наше тело эволюционировало для постоянного движения. Если же человек начинает вести малоподвижный образ жизни, например, целый день сидит в офисе, а затем вечер ...